Shellogy: Reading shells to empower reef scale management

Jeremy Prince

Auckland

February 2023

The Tyranny of Scale

Regional Scale of Management and Enforcement

Local Scale of Data Collection and Stock Assessment

The Challenge:

Managing at the Scale of Functional Stocks requires Motivated Diver Behaviour

10m Radius Survey Circle

Emergence & Maturity

Shellogy: Using morphometric markers to visually assess reefs

Shell Appearance: 1. Doming & rounding (Height : Length ratio) (Length : Width ratio)

- 2. Fouling & Erosion
- 3. Breeding scar

Prince J.D., Peeters, H., Gorfine, H. & Day R.W. (2008). The novel use of harvest policies and rapid visual assessment to manage spatially complex abalone resources (Genus *Haliotis*). *Fish. Res.* 94: 330-338.

Re-deposition or 'Stippling'

Etching

w

N

3/6

11/6

15/16

Directional Etching & Stippling

Infilling from Behind'

Haliotis rufescens

Haliotis rubra

Haliotis laevigata

Haliotis rubra

Haliotis laevigata

Haliotis rubra

Haliotis laevigata

Abalone Working Group Pilot Project

A Presentation to the California Department of Fish and Wildlife Feb 4, 2016

Shellogy

- Sub-adults grow mainly in length, shells are thin, flat and oval.
- Abalone take several years to completely mature and should be allowed several years of breeding with full adult potential.
- Fully mature abalone are thick, round, and bowl-like, with well developed scars.
- Harvested abalone should be rounded and domed regardless of size.
- Catches comprised mainly of flat, clean oval shells indicate insufficient breeding to sustain future production.

Rapid Assessment & Micro-Management

Estimating Maturity from Size of Emergence

The Average Size of Clean Flat Shells Indicates Size of Maturity

Estimating Maturity from Size of Emergence

Prince, J.D., Harford, W.J., Taylor, B.M., Lindfield, S.J. Size distributions of fish spawning aggregations reveal a mismatch between physiological estimates of maturity and reproductive behaviour. Fish & Fisheries (2022 DOI: 10.1111/faf.12702)

SPR Assessment

Sample	L50 (mm)	SPR 20%	L∞ (mm)	SPR
1	121	146	202	0.22
2	124	149	207	0.18
3	126	151	210	0.17
4	128	154	213	0.18
5	131	157	218	0.15
6	132	158	220	0.16
7	137	164	228	0.12

 L_{50}/L_{∞}

0.6

Hordyk, A., Ono, K., Valencia, S.V., Loneragan, N., Prince, J.D. 2015. A novel length-based estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. *ICES J. Mar. Sci.* 72, 217–231. *doi:10.1093/icesjms/fsu004* Prince J.D. and Hordyk, A. (2018). What to do when you have almost nothing: a simple quantitative prescription for managing extremely data-poor fisheries. Fish & Fisheries. 20, 224-238. DOI: 10.1111/faf.12335

Disaster Bay

Harford, W.J., Natalie A. Dowling, N.A., Prince, J.D., Hurd, F., Bellquist, L., Likins, j., Wilson, J.R., (2018). An indicator-based decision framework for the northern California red abalone fishery, Ecosphere 10(1):e02533. 10.1002/ecs2.2533

Hordyk, A., Loneragan, N., Prince, J.D. 2015. An evaluation of an iterative harvest strategy for data-poor fisheries using the length-based spawning potential ratio assessment methodology. *Fish. Res.*171: 20-32. http://dx.doi.org/10.1016/j.fishres.2014.12.018

